

Poltekita: Jurnal Ilmu Kesehatan

e-ISSN: 2527-7170 dan p-ISSN: 1907-459X Volume 19 Issue 2, 2025, page 286-295 DOI: 10.33860/jik.v19i2.4188

Website: https://ojs.polkespalupress.id/index.php/JIK

Publisher: Poltekkes Kemenkes Palu

Original Article

The Relationship Between Lifestyle and Dietary Patterns and the Incidence of Degenerative Diseases

Zaki Irwan^{1*}, Muh. Hasyim¹, Erdiawati Arief¹, Fahrul Islam², Fajar Akbar², Firman³

- ¹Department of Nutrition, Poltekkes Kemenkes Mamuju, West Sulawesi, Indonesia
- ²Department of Environmental Health, Poltekkes Kemenkes Mamuju, West Sulawesi, Indonesia
- ³Faculty of Public Health, Ahmad Dahlan University, Yogyakarta, Indonesia
- *Corresponding author: zaki.gizimamuju@gmail.com

ARTICLE INFO

Article History: Received: 2025-05-18 Published: 2025-08-31

Keywords:

Lifestyle; dietary pattern; degenerative diseases; diabetes mellitus; hypertension

ABSTRACT

Degenerative diseases, particularly diabetes mellitus and hypertension, contribute substantially to morbidity in Indonesia, including rural areas undergoing lifestyle transitions. Kalukku Subdistrict in Mamuju Regency is one such region, yet no comprehensive studies have examined the relationship between lifestyle, diet, and nutritional status with these diseases. This study aimed to analyze associations between lifestyle, dietary patterns, and nutritional status with the incidence of diabetes mellitus and hypertension in Kalukku Subdistrict. A cross-sectional design was applied to 150 purposively selected patients with diabetes mellitus and hypertension recorded at Tampapadang Health Center. Data were collected using lifestyle questionnaires, 24-hour dietary recalls, semi-quantitative food frequency questionnaires (SQ-FFQ), and anthropometric measurements. Associations were analyzed using chi-square tests with odds ratios (ORs) and 95% confidence intervals (CIs). Unhealthy lifestyle was strongly associated with diabetes mellitus (p<0.001, OR=12.17) and hypertension (p<0.001, OR=0.016, indicating 98.4% lower risk in individuals with healthy lifestyles). Unhealthy dietary patterns were associated with diabetes mellitus (p=0.040, OR=3.51) but not with hypertension (p=1.00). Nutritional status showed no significant relationship with either condition (p>0.05). Lifestyle is a key determinant of both diabetes mellitus and hypertension, while dietary patterns are associated only with diabetes mellitus. Nutritional status was not significantly linked to either disease. These findings highlight the importance of community-based health promotion and prevention, including daily physical activity through group exercise, dietary modification using local foods (corn, cassava, sweet potatoes) as alternatives to white rice, and salt-reduction campaigns via cooking demonstrations.

©2025 by the authors. Submitted for possible open-access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (https://creativecommons.org/licenses/by-sa/4.0/)

INTRODUCTION

Non-communicable diseases (NCDs) pose a significant global health challenge, constituting over 80% of mortality and morbidity.¹ In Indonesia, this reflects an ongoing epidemiological transition marked by a rising prevalence of NCDs, particularly degenerative diseases, among both the productive age group and the elderly.².³ The increasing burden of degenerative diseases is closely

related to individual risk factors such as unhealthy diets, sedentary lifestyles, and poor nutritional status. A modern lifestyle characterized by high consumption of fat, sugar, and salt combined with low physical activity has accelerated metabolic degeneration, which underlies various degenerative diseases, notably diabetes mellitus and hypertension.^{4,5}

Hypertension and diabetes are two degenerative diseases that not only have high prevalence but also represent major risk factors for cardiovascular disease. Hypertension is not only a disease in itself but also serves as a "gateway" to serious complications such as stroke, heart failure, and chronic kidney disease.⁶ Meanwhile, the rising incidence of diabetes among adolescents is concerning, as it indicates a shift in the onset of degenerative diseases to younger age groups.⁷

Globally, the prevalence of diabetes among adults was recorded at 14% in 2022, affecting more than 800 million people. In the same year, nearly 450 million adults aged \geq 30 years, representing about 59% of all people with diabetes, remained untreated.⁸ Hypertension is likewise a global health problem, affecting an estimated 1.28 billion adults worldwide.⁹ This has prompted the establishment of global NCD targets, including a 25% reduction in hypertension prevalence by 2025.¹⁰ At the national level, the prevalence of hypertension among Indonesians aged \geq 18 years reached 30.8%.¹¹ The prevalence of diabetes mellitus among those aged \geq 15 years also rose from 2.0% to 2.2%.¹² Locally, the prevalence of diabetes mellitus in West Sulawesi Province is reported at 0.9%, while hypertension reaches 34.77%.¹³

Kalukku Subdistrict in Mamuju Regency, West Sulawesi, is an area undergoing demographic and economic growth. These changes have influenced local lifestyles, including dietary habits and daily activities. However, research in rural Indonesia, especially in West Sulawesi, remains scarce. Previous studies often focused on urban populations or examined single risk factors, while no comprehensive study has yet evaluated the combined role of lifestyle, diet, and nutritional status in relation to diabetes mellitus and hypertension in this area.

The growing burden of degenerative diseases in Indonesia presents a major public health challenge, particularly in rural areas with limited access to health education.¹⁴ Mortality from degenerative diseases tends to be higher in rural than urban areas, partly due to inadequate health facilities and uneven distribution of healthcare workers. ¹⁵ Thus, mapping the distribution and trends of diseases at the local level is crucial to support effective health promotion and prevention strategies. Therefore, this study aims to analyze the association between dietary patterns, lifestyle, and nutritional status with the incidence of degenerative diseases (diabetes and hypertension) in Kalukku. The findings are expected to provide evidence for developing context-specific community-based health interventions, supporting local health policy planning, and strengthening monitoring systems for NCD risk factors.

METHODS

This study employed a quantitative cross-sectional approach to analyze the relationship between individual risk factors and degenerative diseases (diabetes mellitus and hypertension). The study population consisted of all patients with confirmed diagnoses of diabetes mellitus or hypertension recorded in Tampapadang Health Center medical records. The final sample size was 150 respondents. Purposive sampling was used with the following inclusion criteria: (1) patients with a confirmed medical diagnosis of diabetes mellitus or hypertension verified through medical records; (2) aged \geq 20 years; (3) residing in the Tampapadang Health Center service area for at least one year; and (4) willingness to participate indicated by signing informed consent, and Exclusion criteria: (1) patients with severe complications (e.g., stroke, kidney failure, or terminal cardiovascular disease); (2) patients with cognitive or physical limitations that hindered questionnaire completion; and (3) pregnant women.

The sample size of 150 was determined using the Lemeshow formula for hypothesis testing of proportions, assuming a 95% confidence level, 80% power, and a national hypertension prevalence

of 30.8%. The minimum required sample was 138, which was then increased by 10% to anticipate dropouts, resulting in 150 respondents. The lifestyle questionnaire assessed physical activity, smoking, alcohol consumption, and sleep. Content validity was confirmed through expert judgment (public health and nutrition experts from Poltekkes Kemenkes Mamuju), and reliability testing produced a Cronbach's alpha of 0.81. The SQ-FFQ evaluated dietary patterns over the previous six months and was adapted to local food items (85 food items commonly consumed in the community). Construct validity testing showed item-total correlations >0.30, with a Cronbach's alpha of 0.79. Dietary quality scores above the median were categorized as "healthy," while scores below the median (86) were categorized as "unhealthy." Anthropometric measurements included height (stadiometer) and weight (calibrated digital scale). Nutritional status was classified as normal if BMI was 18.5–24.9 kg/m². Data analysis: Chi-Square tests were used with a significance level of p<0.05. Risk estimates were expressed as odds ratios (ORs) with 95% confidence intervals (CIs). Analyses were performed using SPSS.

Bias control: Self-report bias was minimized by providing respondents with clear explanations and assistance during questionnaire completion; Recall bias in the SQ-FFQ was minimized through the use of specific frequency questions and a food photo booklet to help estimate portion sizes; and Selection bias was minimized by applying strict inclusion–exclusion criteria and using verified medical records. This study did not require formal approval from an institutional ethics committee, as it involved minimal risk and no clinical intervention. However, all procedures were conducted in accordance with the ethical principles of the Declaration of Helsinki. Prior to data collection, the researchers provided clear information to all participants regarding the purpose, procedures, potential risks, and benefits of the study. Written informed consent was obtained from all participants to ensure voluntary participation and confidentiality of data. Participants were also informed of their right to withdraw from the study at any time without consequence.

RESULTS

The findings are presented in the following tables.

Table 1. Frequency Distribution of Respondent Characteristics

Variables	n	%
Gender		
Male	53	35.3
Female	97	64.7
Respondent Age		
20 - 39 Years	24	16
40 - 59 Years	88	58.7
>= 60 Years	38	25.3
Respondent Occupation		
Unemployed	4	2.7
Housewife	86	57.3
Laborer / Farmer / Fisherman	35	23.3
Trader / Self-employed	12	8
Contract Worker	3	2
Civil Servant	10	6.7
Lifestyle		
Good	83	55.3
Poor	67	44.7
Dietary Pattern		
Good	94	62.7
Poor	56	37.3

Variables	n	%
Diabetes Mellitus		
Yes	24	16
No	126	84
Hypertension		
Yes	65	43.3
No	85	56.7
Nutritional Status		
Normal	63	42
Abnormal / Not Normal	87	58

Table 1 shows the general characteristics of respondents. Most respondents were female (64.7%), aged 40–59 years (58.7%), and housewives (57.3%). A majority reported healthy lifestyles (55.3%) and healthy dietary patterns (62.7%). Hypertension was found in 65 respondents (43.3%), while 58% were classified as having abnormal nutritional status.

Table 2. Association between Lifestyle, Dietary Patterns, and Nutritional Status with Diabetes Mellitus

Individual	Individual Risk		Deabet	es Melitu	OR	P	
Risk Factors	Factor Categories	Yes Not		(95% CI)	Value*		
		n	%	n	%		
Lifestyle	Unhealthy	21	31.3	46	68.7	12.2	< 0.001
	Healthy	3	3.6	80	96.4	(3.4 - 43)	
Dietary	Unhealthy	20	21.3	74	78.7	3.5 (1.1 - 10.9)	0.04
Pattern	Healthy	4	7.1	52	92.9		
Nutritional	Abnormal	13	14.9	74	85.1	0.8 (0.3 - 2)	0.850
Status	Normal	11	17.5	52	82.5		

Remarks: OR = Odds Ratio; *significant statistic p<0,05

Table 2 shows that unhealthy lifestyle was significantly associated with diabetes mellitus (p<0.001). Respondents with unhealthy lifestyles were 12.17 times more likely to develop diabetes mellitus compared to those with healthy lifestyles. Unhealthy dietary patterns were also significantly associated with diabetes mellitus (p=0.04), with respondents 3.51 times more likely to develop diabetes mellitus compared to those with healthy diets. Nutritional status was not significantly associated with diabetes mellitus (p=0.85).

Table 3 shows that lifestyle was significantly associated with hypertension (p<0.001). Respondents with healthy lifestyles had a 98.4% lower risk of hypertension compared to those with unhealthy lifestyles (OR=0.016). Neither dietary patterns nor nutritional status were associated with hypertension (p=1.0).

Table 3. Association between Lifestyle, Dietary Patterns, and Nutritional Status with Hypertension

Individual	Individual Risk		Hypert	ension		OR	P
Risk	Factor Categories	Yes Not		(95% CI)	Value*		
Factors		n	%	n	%		
Lifestyle	Unhealthy	62	74.7	21	25.3	0.016 (0.005 - 0.06)	< 0.001
	Healthy	3	4.5	64	95.5		
Dietary	Unhealthy	41	43.6	53	56.4	1 (0.5 - 2.0)	1.000
Pattern	Healthy	24	42.9	32	57.1		
Nutritional	Abnormal	38	43.7	49	56.3	1 (0.5 - 2.0)	1.000
Status	Normal	27	42.9	36	57.1		

Remaks: OR = Odds Ratio; *significant statistic p<0,05

DISCUSSION

Lifestyle and Degenerative Diseases (Diabetes Mellitus and Hypertension)

This study revealed a significant association between lifestyle and the occurrence of degenerative diseases, namely diabetes mellitus (DM) and hypertension. Respondents with unhealthy lifestyles were 12.17 times more likely to develop DM compared to those with healthy lifestyles. This finding is consistent with previous studies reporting that lifestyle is a major trigger of degenerative diseases. Prior research has shown that regular physical activity can reduce the risk of DM by up to 92%, and that aerobic exercise significantly lowers blood glucose levels when performed consistently.

The majority of respondents were aged 40-59 years (58.7%) and ≥ 60 years (25.3%). With increasing age, metabolism declines and insulin production decreases, particularly among those with low levels of physical activity.^{20,21} Women are also more vulnerable to DM due to a sedentary lifestyle, obesity, and lower levels of physical activity.²²

For hypertension, respondents with a healthy lifestyle had a 98.4% lower risk compared to those with an unhealthy lifestyle, consistent with studies that found a significant relationship between lifestyle and hypertension. Age \geq 36 years and obesity are also known to be important risk factors for hypertension. These results emphasize that lifestyle particularly physical activity is a key determinant of degenerative diseases.

Dietary Patterns and Degenerative Diseases (Diabetes Mellitus and Hypertension)

The study showed a significant association between dietary patterns and DM. Unhealthy dietary patterns increased the risk of DM by 3.51 times. This finding is supported by studies indicating that high consumption of fat- and sugar-rich foods significantly increases DM risk. 11,25,26 Diets low in fiber and high in refined carbohydrates (white rice, processed fatty foods, and sugary drinks) can induce insulin resistance. 5,27-29 Low fruit and vegetable intake may be related to economic factors, food availability, and limited awareness of fiber's role in controlling blood glucose. Healthy dietary interventions—such as replacing sugary drinks with low-calorie beverages, consuming unsweetened tea, and increasing fruit and vegetable intake—have been shown to reduce the risk of type 2 DM. 30-32

Conversely, dietary patterns were not significantly associated with hypertension in this study. This may be due to the homogeneity of high sodium consumption in the study area. The frequent intake of salted fish, instant noodles, and flavor enhancers contributed to high salt consumption. ^{33,34} ³⁵ Excess sodium intake is a well-established risk factor for hypertension. ^{33,34,36} However, other studies indicate that fruit, vegetable, and plant-based diets have protective effects against hypertension. ^{29–31,33,34,36–38} It is important to note that the relationship between dietary habits and hypertension is complex and may be influenced by other factors such as age, sex, and lifestyle characteristics. Thus, these factors must be considered when interpreting the association between diet and hypertension. ³⁹

Nutritional Status and Degenerative Diseases (Diabetes Mellitus and Hypertension)

Nutritional status was not significantly associated with either DM or hypertension. This result aligns with studies reporting no significant association between nutritional status and these diseases. 40 However, it contradicts other literature suggesting a strong link between obesity and the occurrence of both DM and hypertension. 14,26,41 Poor nutritional status such as obesity increases cardiac output and triggers activation of the sympathetic nervous system and the Renin-Angiotensin-Aldosterone System (RAAS), thereby elevating blood pressure. 24

The discrepancy may be due to the use of BMI as the sole indicator of nutritional status, which does not reflect fat distribution. Parameters such as waist circumference or waist-to-hip ratio may provide a more accurate assessment of metabolic risk.⁴² Therefore, future research is recommended to incorporate more comprehensive anthropometric measures. In addition, other factors such as physical activity and dietary patterns may have stronger effects.

Public Health Implications

The prevalence of hypertension in Kalukku (43.3%) was higher than the national prevalence (30.8%), while the prevalence of DM was lower (16%).¹¹ The majority of respondents were housewives with low levels of physical activity, consistent with findings from the Ministry of Health's Basic Health Research in West Sulawesi. Lifestyle, diet, and physical activity play crucial roles in chronic disease control.³⁹ Community-based interventions are needed, such as the "Healthy Living Movement" promoting regular physical activity, dietary education based on local foods, and salt reduction campaigns.⁴³ Socio-cultural factors also influence eating behaviors, including low fruit and vegetable intake due to perceived costs and traditions.⁴⁴ Strengthening community-based noncommunicable disease posts (Posbindu PTM) with local adaptations, as well as integrating routine health screening into village development programs, should be considered to reduce the prevalence of NCDs.

Study Limitations

This study has several limitations: (1) the cross-sectional design does not establish causal relationships; (2) purposive sampling limits the generalizability of results; (3) uncontrolled confounders such as family history and genetic factors; (4) lack of direct measurement of daily salt and sugar intake; and (5) the use of median values as cut-offs for dietary patterns, which may not represent clinically meaningful differences. Future research should consider longitudinal designs, more comprehensive measurements (e.g., waist circumference, lipid profile), and mixed-methods approaches to explore deeper socio-cultural determinants.

CONCLUSION

This study concludes that lifestyle is significantly associated with the occurrence of both diabetes mellitus and hypertension, while dietary patterns are significantly associated only with diabetes mellitus. Conversely, nutritional status showed no significant association with either diabetes mellitus or hypertension. These findings highlight the importance of community-based promotive and preventive interventions focusing on lifestyle behavior change, particularly through strengthening local health programs such as Posbindu PTM, in a more contextual and collaborative manner. Such interventions should involve cross-sector collaboration with community health workers, village officials, and local leaders. Activities may include promoting at least 30 minutes of daily physical activity (e.g., group exercise sessions), community-based dietary education through posyandu cadres on the use of local foods (corn, cassava, or sweet potatoes) as alternatives to white rice, and salt-reduction campaigns through cooking demonstrations. Future research should employ longitudinal designs with more detailed measurements such as waist circumference and lipid profiles. Mixed-methods approaches are recommended to better capture socio-cultural determinants. Comparative studies with other rural areas in West Sulawesi are also needed to enrich the evidence base.

Author's Contribution Statement: Zaki Irwan, Muh. Hasyim, and Erdiawati Arief played key roles in conceptualizing the idea and designing the research methodology. Fahrul Islam and Firman contributed to data analysis and drafting the article. Fajar Akbar was responsible for the final editing before the article was submitted to the journal.

Conflict of Interest: This research has no conflict of interest with anyone or any party.

Funding Source: This research was funded by Poltekkes Kemenkes Mamuju.

Acknowledgments: We would like to express our sincere gratitude to the Director of Poltekkes Kemenkes Mamuju for providing the research grant that supported this study. We also extend our heartfelt thanks to the Head of Tampapadang Primary Health Center, Kalukku Subdistrict, Mamuju

Regency, for providing the data necessary for this research. Their valuable support contributed significantly to the successful completion of this project.

REFERENCES

- 1. Belayneh A, Chelkeba L, Amare F, Fisseha H, Abdissa SG, Kaba M, et al. Investigation of non-communicable diseases prevalence, patterns, and patient outcomes in hospitalized populations: a prospective observational study in three tertiary hospitals. J Heal Popul Nutr [Internet]. 2024 Aug 20;43(1):128. Available from: https://jhpn.biomedcentral.com/articles/10.1186/s41043-024-00599-z
- 2. Lukitaningtyas D, Cahyono EA. Hipertensi; Artikel Review. Pengemb Ilmu dan Prakt Kesehat [Internet]. 2023 Apr 17;2(2):100–17. Available from: https://e-journal.lppmdianhusada.ac.id/index.php/PIPK/article/view/272
- 3. Meilina R, Marniati, Mufliha A, Nurhaliza, Yani N, Mihraj SB. Sosialisasi Pencegahan Dini Munculnya Penyakit Degeneratif pada Usia Produktif di SMKS Muhammadiyah Banda Aceh. J Pengabdi Masy [Internet]. 2020;2(1):56–60. Available from: https://jurnal.uui.ac.id/index.php/jpkmk/article/view/879/448
- 4. Sudayasa IP, Rahman MF, Eso A, Jamaluddin J, Parawansah P, Alifariki LO, et al. Deteksi Dini Faktor Risiko Penyakit Tidak Menular Pada Masyarakat Desa Andepali Kecamatan Sampara Kabupaten Konawe. J Community Engagem Heal [Internet]. 2020 Mar 1;3(1):60–6. Available from: https://jceh.org/index.php/JCEH/article/view/37
- 5. Amila A, Sembiring E, Aryani N. Deteksi Dini Dan Pencegahan Penyakit Degeneratif Pada Masyarakat Wilayah Mutiara Home Care. J Kreat Pengabdi Kpd Masy [Internet]. 2021 Jan 29;4(1):102–12. Available from: http://ejurnalmalahayati.ac.id/index.php/kreativitas/article/view/3441
- 6. Delavera A, Siregar KN, Bahar R jazid, Eryando T. Hubungan Kondisi Psikologis Stress dengan Hipertensi pada Penduduk Usia diatas 15 tahun di Indonesia. J Biostat Kependudukan, dan Inform Kesehat [Internet]. 2021 Aug 13;1(3):148. Available from: https://scholarhub.ui.ac.id/bikfokes/vol1/iss3/2/
- 7. Universitas Airlangga. Tantangan Indonesia dalam Menghadapi Penyakit Tidak Menular [Internet]. 2023 [cited 2025 May 12]. Available from: https://unair.ac.id/tantangan-indonesia-dalam-menghadapi-penyakit-tidak-menular/
- 8. Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet [Internet]. 2024 Nov;404(10467):2077–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673624023171
- 9. WHO. Hypertension [Internet]. 2023 [cited 2025 May 12]. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension
- 10. Universitas Airlangga. Skrining Hipertensi di Puskesmas Mulyorejo pada Tahun 2019 [Internet]. 2022 [cited 2025 May 12]. Available from: https://unair.ac.id/skrining-hipertensi-di-puskesmas-mulyorejo-pada-tahun-2019/
- 11. Badan Kebijakan Pembangunan Kesehatan. Prevalensi, Dampak, serta Upaya Pengendalian Hipertensi & Diabetes di Indonesia [Internet]. Kemenkes RI. 2023. Available from: https://repository.badankebijakan.kemkes.go.id/id/eprint/5536/1/07 factsheet PTM_bahasa.pdf
- 12. Badan Kebijakan Pembangunan Kesehatan Kemenkes. Potret Sehat Indonesia dari Kacamata SKI 2023 [Internet]. 2024 [cited 2025 May 12]. Available from: https://www.badankebijakan.kemkes.go.id/potret-sehat-indonesia-dari-kacamata-ski-2023/

- 13. Kemenkes RI. Laporan Nasional Riskesdas [Internet]. 2018. Available from: https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/1/Laporan Riskesdas 2018 Nasional.pdf
- 14. Yunita M, Bension JB, Warella JC, Husein AL, Hursepuny V. Edukasi dan Pemeriksaan Kesehatan Untuk Penyakit Degeneratif di Negeri Kamal. J Pengabdi Masy Pemberdayaan, Inov dan Perubahan [Internet]. 2024;4(6):113–8. Available from: https://jurnal.penerbitwidina.com/index.php/JPMWidina/article/view/977/921
- 15. Chayati N, Marwanti M, Ats-tsaqib MB, Munarji RP. Identifikasi Nilai Indeks Massa Tubuh, Lingkar Perut, dan Konsumsi Buah Sayur sebagai Faktor Risiko Penyakit Tidak Menular. Media Karya Kesehat [Internet]. 2023 May 29;6(1):130–41. Available from: http://jurnal.unpad.ac.id/mkk/article/view/39292
- 16. Murningtyas FS, Larasati MD, Rahmawati AY, Prihatin S. The Great Risk of Physiology and Behavioral Factors with Metabolic Syndrome Incidents. J Ris Gizi [Internet]. 2020;8(1):11. Available from: https://core.ac.uk/download/478597757.pdf
- 17. Yoon J, Kim J, Son H. Gender Differences of Health Behaviors in the Risk of Metabolic Syndrome for Middle-Aged Adults: A National Cross-Sectional Study in South Korea. Int J Environ Res Public Health [Internet]. 2021 Apr 1;18(7):3699. Available from: https://www.mdpi.com/1660-4601/18/7/3699
- 18. Rizka Kinanti Adam, Masriadi, Fatmah Afrianty Gobel. Faktor yang Berhubungan dengan Sindrom Metabolik (Hipertensi dan DM tipe 2) di Puskesmas Perawatan Siko Kota Ternate. Wind Public Heal J [Internet]. 2021 Oct 30;2(5):774–83. Available from: https://jurnal.fkm.umi.ac.id/index.php/woph/article/view/267
- 19. Fathoni A, Sentana AD, Ningsih MU, Rifki M. The Effect of Aerobic Exercise Frequency on Reducing Blood Glucose in Type 2 Diabetes Mellitus Sufferers in the Lingsar Health Center Working Area in 2024. Poltekita J Ilmu Kesehat [Internet]. 2024 Aug 31;18(2):142–6. Available from: https://ojs.polkespalupress.id/index.php/JIK/article/view/3824
- 20. Vadila A, Dody Izhar M, Helmi Suryani Nasution. Factors of Type 2 Diabetes Mellitus in the Putri Ayu Health Center. Media Kesehat Politek Kesehat Makassar [Internet]. 2021;16(2):229–37. Available from: https://journal.poltekkes-mks.ac.id/ois2/index.php/mediakesehatan/article/view/2282
- 21. Widiasari KR, Wijaya IMK, Saputra PA. Diabeter Melitus Tipe 2: Faktor Risiko, Diagnosis, dan Tatalaksana. Ganesha Med J [Internet]. 2021;1(2):114–20. Available from: https://ejournal.undiksha.ac.id/index.php/GM/article/view/40006
- 22. Saleh E, Mohammed E. Nutritional status and Food consumption Pattern of Type 2 Diabetic Patients in Aboudah Health Center, Kerri Locality, Khartoum State, Sudan. East African Sch J Med Sci [Internet]. 2019;2(10):569–76. Available from: http://www.easpublisher.com/easims/
- 23. Ferdina AR, Setyawati B, Fuada N. Sociodemographic, Nutritional Status, Lifestyle, And Dietary Habits As Factors Associated With Hypertension In Kalimantan. Penelit Gizi dan Makanan (The J Nutr Food Res [Internet]. 2023;46(1):21–30. Available from: https://pgm.persagi.org/index.php/pgm/article/view/749
- 24. Lalusu EY, Papendang IS, Balebu DW. A Multivariate Prediction Model for Hypertension Incidence. Poltekita J Ilmu Kesehat [Internet]. 2025;19(1):77–85. Available from: https://ois.polkespalupress.id/index.php/JIK/article/view/4039/1184
- 25. Balasubramanian GV, Chuah KA, Khor BH, Sualeheen A, Yeak ZW, Chinna K, et al. Associations of Eating Mode Defined by Dietary Patterns with Cardiometabolic Risk Factors in the Malaysia Lipid Study Population. Nutrients [Internet]. 2020 Jul 14;12(7):2080. Available from: https://www.mdpi.com/2072-6643/12/7/2080

- 26. Mulyani NS, Fitriyaningsih E, Wagustina S, Arnisam A. Deteksi dini kejadian sindrom metabolik melalui penyuluhan gizi, pengukuran Indeks Massa Tubuh (IMT) dan pemeriksaan tekanan darah serta kadar gula darah. J PADE Pengabdi Edukasi [Internet]. 2023 Mar 25;5(1):34. Available from: https://ejournal.poltekkesaceh.ac.id/index.php/pade/article/view/1098
- 27. Dewi ISK, Pramantara IDP, Pangastuti R. Pola makan berhubungan dengan sindrom metabolik pada lanjut usia di Poliklinik Geriatri RSUP Sanglah Denpasar. J Gizi Klin Indones [Internet]. 2010 Mar 1;6(3):105. Available from: https://jurnal.ugm.ac.id/jgki/article/view/17718
- 28. Shab-Bidar S, Golzarand M, Hajimohammadi M, Mansouri S. A posteriori dietary patterns and metabolic syndrome in adults: a systematic review and meta-analysis of observational studies. Public Health Nutr [Internet]. 2018 Jun 21;21(9):1681–92. Available from: https://www.cambridge.org/core/product/identifier/S1368980018000216/type/journal_a rticle
- 29. El-Alameey IR, Al-Aswad WA, M. Khojah R, Al-Rehaili RD, Al-Saedi LA, Al-Buladi YS. Relationship between Dietary habits, lifestyle risk factors and dysglycemia among patients with type 2 diabetes mellitus in Al Madinah Al Munawara, Saudi Arabia. Biomed Pharmacol J [Internet]. 2023 Sep 30;16(3):1405–14. Available from: https://biomedpharmajournal.org/vol16no3/relationship-between-dietary-habits-lifestyle-risk-factors-and-dysglycemia-among-patients-with-type-2-diabetes-mellitus-in-al-madinah-al-munawara-saudi-arabia/
- 30. Zhu H, Zhang L, Zhu T, Jia L, Zhang J, Shu L. Impact of sleep duration and dietary patterns on risk of metabolic syndrome in middle-aged and elderly adults: a cross-sectional study from a survey in Anhui, Eastern China. Lipids Health Dis [Internet]. 2024 Nov 5;23(1):361. Available from: https://lipidworld.biomedcentral.com/articles/10.1186/s12944-024-02354-z
- 31. Motazedian N, Zibaeenezhad MJ, Sayadi M, Khademian F, Hasanzadeh M, Ghorbanpour A, et al. Association of Dietary Patterns with Metabolic Syndrome among Middle-Aged Adults in Shiraz, Iran: Shiraz Heart Study (SHS). Valdés-Ramos R, editor. J Nutr Metab [Internet]. 2024 Jan 26;2024(1). Available from: https://onlinelibrary.wiley.com/doi/10.1155/2024/1382031
- 32. Kalandarova M, Ahmad I, Aung TNN, Moolphate S, Shirayama Y, Okamoto M, et al. Association Between Dietary Habits and Type 2 Diabetes Mellitus in Thai Adults: A Case-Control Study. Diabetes, Metab Syndr Obes [Internet]. 2024 Mar; Volume 17(March):1143–55. Available from: https://www.dovepress.com/association-between-dietary-habits-and-type-2-diabetes-mellitus-in-tha-peer-reviewed-fulltext-article-DMSO
- 33. Anyanwu OA, Folta SC, Zhang FF, Chui K, Chomitz VR, Kartasurya MI, et al. A Cross-Sectional Assessment of Dietary Patterns and Their Relationship to Hypertension and Obesity in Indonesia. Curr Dev Nutr [Internet]. 2022 Jun;6(6):nzac091. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2475299122000774
- 34. Alam S, Habibi H, Nildawati N, Syarfaini S, Nurfaidah N, Syarif I. Association Between Dietary Patterns, Physical Activity, and BMI with Hypertension Among Rural Indonesian Farmers: A Cross Sectional Study Using a Nutritional Ecology Perspective. Media Publ Promosi Kesehat Indones [Internet]. 2025 Aug 12;8(8):609–20. Available from: https://jurnal.unismuhpalu.ac.id/index.php/MPPKI/article/view/7599
- 35. Li L, Momma H, Chen H, Nawrin SS, Xu Y, Inada H, et al. Dietary patterns associated with the incidence of hypertension among adult Japanese males: application of machine learning to a cohort study. Eur J Nutr [Internet]. 2024 Jun 25;63(4):1293–314. Available from: https://link.springer.com/10.1007/s00394-024-03342-w
- 36. Margerison C, Riddell LJ, McNaughton SA, Nowson CA. Associations between dietary patterns and blood pressure in a sample of Australian adults. Nutr J [Internet]. 2020 Dec 14;19(1):5. Available from: https://nutritionj.biomedcentral.com/articles/10.1186/s12937-019-0519-2

- 37. Wang C, Zheng Y, Zhang Y, Liu D, Guo L, Wang B, et al. Dietary Patterns in Association With Hypertension: A Community-Based Study in Eastern China. Front Nutr [Internet]. 2022 Jul 8;9(July):1–10. Available from: https://www.frontiersin.org/articles/10.3389/fnut.2022.926390/full
- 38. Wiśniewska K, Okręglicka KM, Nitsch-Osuch A, Oczkowski M. Plant-Based Diets and Metabolic Syndrome Components: The Questions That Still Need to Be Answered—A Narrative Review. Nutrients [Internet]. 2024 Jan 4;16(1):165. Available from: https://www.mdpi.com/2072-6643/16/1/165
- 39. Loayza-Castro JA, Valladolid-Sandoval LAM, Romero LEMV, Zuzunaga-Montoya FE, Hidalgo JRA, Vera-Ponce VJ. Lifestyles according to disease duration in patients with diabetes and hypertension. Endocr Metab Sci [Internet]. 2025 Dec;19(October 2024):100259. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666396125000457
- 40. Charissa O, Silaban DYL, Frisca, Kumala M. Association of Nutritional Status with Diabetes Mellitus and Hypertension in the Elderly. Adv Heal Sci Res [Internet]. 2021;41:63–7. Available from: https://www.atlantis-press.com/proceedings/ticmih-21/125965063
- 41. Wang Y, Dai Y, Tian T, Zhang J, Xie W, Pan D, et al. The Effects of Dietary Pattern on Metabolic Syndrome in Jiangsu Province of China: Based on a Nutrition and Diet Investigation Project in Jiangsu Province. Nutrients [Internet]. 2021 Dec 13;13(12):4451. Available from: https://www.mdpi.com/2072-6643/13/12/4451
- 42. Fabiani R, Naldini G, Chiavarini M. Dietary Patterns and Metabolic Syndrome in Adult Subjects: A Systematic Review and Meta-Analysis. Nutrients [Internet]. 2019 Sep 2;11(9):2056. Available from: https://www.mdpi.com/2072-6643/11/9/2056
- 43. Song P, Zhang X, Li Y, Man Q, Jia S, Zhang J, et al. MetS Prevalence and Its Association with Dietary Patterns among Chinese Middle-Aged and Elderly Population: Results from a National Cross-Sectional Study. Nutrients [Internet]. 2022 Dec 13;14(24):5301. Available from: https://www.mdpi.com/2072-6643/14/24/5301
- 44. Madsen H, Sen A, Aune D. Fruit and vegetable consumption and the risk of hypertension: a systematic review and meta-analysis of prospective studies. Eur J Nutr [Internet]. 2023 Aug 27;62(5):1941–55. Available from: https://link.springer.com/10.1007/s00394-023-03145-5